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Abstract The pandemic started in the late 2019 and is still waving in claiming millions
of lives with virus being mutated to deadlier form. This pandemic has caught attention
toward interventions like improved detection of the infected, better quarantine facilities and
adequate medical facilities in terms of hospital beds and other medical aid. In this study,
we developed a 7-compartment epidemiological model, with inclusion of identified and
unidentified infected population along with media factor associated with the aware identified
infected population. This is included by using Holling function in the nonlinear incidence,
that is responsible for reduction in infection rate via identified infected. The model is fitted to
the observed active COVID-19 cases data, collected for a period of 11 months between July
2020 to May 2021 of Nepal and India, and the infection rate as well as the basic reproduction
number is obtained for the first wave and second wave of the pandemic in both countries. A
comparative analysis on the effect of different parameters on the disease prevalence for both
the countries is presented in this work. Sensitivity analysis, time series behavior and optimal
control analysis with control parameters equating with reduced infection rate, enhanced
detection rate, improved quarantine and hospitalization rate are presented in detail. By means
of PRCC, sensitivity analysis is performed and the key parameters influencing the disease
prevalence are identified. A detailed study on impact of several parameters in the COVID-19
prevalence, thereby suggesting the interventions to be implemented is discussed in the work.
Predictions till June 30, 2021, are obtained using the second wave data for both the countries,
and a declining trend is observed for both the countries for the next 30 to 40 days. The
estimated values of the infection rates and the hospitalization rates obtained are higher for
India compared to Nepal. An optimal control analysis for both the countries is described in
detail providing the difference in infectives and recoveries with and without any controls or
interventions. The study suggests that improved treatment facilities, testing drives and other
non-pharmaceutical interventions would bring down the infected cases to a major extent.
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1 Introduction

A pandemic is an epidemic spread over a wide geographical area. The novel coronavirus,
taxonomically known as SARS- CoV-2, first emerged in the Hubei province of China [1] in
November, 2019. The World Health Organization declared it to be a pandemic on March 11,
2020. As per the reports from WHO [2], a total of 3972243 deaths have been registered as of
June 28, 2021. According to the literature studies, this disease is transmitted through nasal
discharge of saliva droplets [3] and is air borne as per the studies by [4,5]. In India, the first
case of COVID-19 was reported on January 30, 2020 [6], and in Nepal the first confirmed case
was reported on January 23, 2020 [7]. Though both these countries have a huge difference
in the number of COVID-19 cases, a similar pattern in the rise in cases is witnessed during
the first and second wave of the pandemic. A pictorial representation is provided in Fig. 1,
where the sudden rise in COVID-19 cases is showcased clearly.

COVID-19 has claimed several lives, and if no proper interventions are implemented, the
pandemic could turn out to be a disaster. Though several interventions and other preventive
measures [8] are recommended, its implementation needs to be of major priority. Social
distancing and compulsory usage of face shields will contribute toward controlling the further
spread of the virus [9,10] majorly. A detailed work on the same is presented in [11,12]. In
[4], the authors have presented a detailed study on several non-pharmaceutical interventions
and importance of social distancing in reducing the spread of infections. Apart from these,
it is highly important to maintain hygiene and good sanitation, as lack of sanitation could
accelerate the infections [13]. In addition to these measures, media information also plays
an important role in making the citizens aware of various preventive measures, the do’s,
and don’ts in case of positive results, etc. This does not add any additional cost and the
information reaches the individuals sitting at home in terms of radio, television, social media
websites, etc. In the works by [14] and [15], a detailed study on media impact as an alternate
measure to control the wide spread of infections is presented. Adequate number of hospital
beds and quarantine space is equally important to curb the further spread of infections. This
is necessary to control the passage of virus to susceptible from identified infectives. If no
proper medication, isolation, and hospital facilities are provided to these individuals, there
are high chances of these individuals encountering susceptible population hence spreading
the infection at alarming rate. A study by [16] stresses on importance of isolation as a public
health measure to control the disease spread. According to [17], India had mere 5.3 beds per
10,000 population in the year 2017, and Nepal had 3 beds per 10,000 population in the year
2012. As per the present time, India had 1 bed per 2000 people before the pandemic hit it
[18]. The reports by [19,20] indicate the scarcity of basic medical facilities in Nepal, which
is responsible for the lower hospitalization rate in the country. If these interventions are well
implemented, the deaths could be controlled to a major extent.

Till date, several works on COVID-19 have been published by researchers. Various works
on combating of COVID-19, predictive analysis, lockdown effects on the disease spread,
face masks efficacy, pharmaceutical intervention, and media impact on spread on COVID-
19, etc., have been incorporated in different mathematical models to study the disease control.
A majority of these works seek inspiration from the traditional SIR model [21]. In [22], a SUC
compartmental model is discussed to estimate the unidentified infected in China, which differs
from the SIR model in terms of the compartments U (unidentified infected population) and
C (confirmed infectives, recovered and dead population), considering possibilities of many
unreported cases. A brief review on various compartmental models is presented in [23], and
a study on mathematical modeling with and without inclusion of interventions is presented in
[24]. A detailed study on sensitivity and optimal control analysis for worst hit states of India
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Fig. 1 First and Second Wave of COVID-19 in India and Nepal

with inclusion of compartments on quarantine and governmental measures is presented in
[25]. In [26], the author worked on a mathematical model and performed statistical analysis to
predict COVID-19 cases in India. A study based on lockdown effect is discussed in [27,28].
In these studies, a detailed analysis based on different lockdown periods is laid out, where
the former work is based on classical SIR model applied to different lockdown scenarios, the
later has an additional treatment class with a piecewise treatment function, presenting both
deterministic and stochastic analysis.

In [29], the authors have worked on SIR and fractal interpolation model, applying it on the
COVID-19 data set of India and estimated the duration of second and third wave of COVID-19
in India. As per the study, the peak during the third wave could be achieved by October 2021,
but these predictions are based on SIR model framework without inclusion of quarantine
or lockdown and other intervention policies. On the other hand, a detailed explanation on
SIR model with uncertainty is shown in [30], in which α − path-based approach is used
to calculate uncertain distribution of the solution, thereby presenting potential demand for
medical resources and lockdown to combat the disease in Hubei, China. A detailed discussion
on attainment of herd immunity in India is studied in [31] by working on COVID-19 infected
population data of top fifteen counties and applying multifractal approach. In [32], the disease
prevalence in Kerala and India is predicted using SIR model by incorporating quarantine
and testing factors. The impacts of lockdown before and after rise in the cases are also
quantified in the study. The studies by [33,34] present results based on SIR model by providing
estimations on recovery and infection rates and analysis based on effective reproduction
number, respectively. In [35], the authors have worked on SIR model with a difference that
the susceptible population does not decline monotonically. The study suggests that with
appropriate restrictions, the disease spread could be controlled.

This study is based on mathematical modeling of COVID-19 and different analysis on
it. In this work, we developed an epidemiological model with seven compartments, with
inclusion of media factor in the nonlinear incidence term. We used Holling function [36] for
inclusion of this decay factor. The population in the model is categorized to identified infected
and unidentified infected. The proposed model in the study is different from the classical
SIR model and the other SIR-related works discussed above in the sense that, in this model
additional compartments namely exposed class which signifies incubation period, quarantine
class and hospitalization class are included, along with identified and unidentified infected
classes. However, the major difference is the media factor which is included in the nonlinear
incidence term signifying disease transmission by using Holling function. In the model,
testing and face mask factors are also incorporated. The aim is to determine the effective
contact rate and the hospitalization rate of the identified infected for the two countries, Nepal
and India. The focus is on improvement of the hospitalization facilities, so that the spread of

123



 1058 Page 4 of 25 Eur. Phys. J. Plus        (2021) 136:1058 

infections from the detected infected population can be brought to decline. Section 2 gives
a detailed information on the problem formulation followed by Sect. 3 in which stability
of the equilibrium points and the basic reproduction number are discussed. The numerical
simulations and analysis are presented in Sect. 4. The optimal control problem and simulation
are discussed in detail in Sect. 5, where in the highlight is the control parameter relating to
enhanced hospitalization and quarantine facilities. The work completes with conclusion in
Sect. 6.

2 Problem formulation

In this study, we develop an epidemiological model with 7 compartments. The compart-
ments are Susceptible (S), Exposed (E), Infected unidentified (Ia), Infected identified (Id),
Quarantined (Q), Hospitalized (H) and Recovered (R). We consider that both the infected
compartments involve individuals with no or mild symptoms and severe symptoms. Since
here we have considered a detected set of infected population, we include a media factor (m)

which is responsible for reduction in disease transmission via the detected infected individ-
uals, since these detected infectives are aware of being infectious to others. Therefore, these
individuals will be more careful toward following protocols. The information through media
will make them more educated on the disease spread and control. We include natural births
and deaths in this model. A schematic representation of the model is given in Fig. 2.

We make the following assumptions and frame the system of differential equations to get
the desired model.

1. The disease transmission takes place when the susceptible encounters infected individuals.
These infected individuals include both detected and undetected infectives. Let β be
the effective contact rate at which the disease transmission takes place. Since media
information is included in the study, there is a reduction in the disease transmission due
to this media factors (m) which acts as a decay factor in the nonlinear incidence term
denoting the disease transmission when the susceptible make effective contact with aware
and identified infected (Id) individuals. Hence, the force of infection is given by:

β

(
Ia + ζ Id

m + Id

)
S

Here, ζ is the modification parameter lying between 0 and 1 signifying reduction in disease
transmission by identified infected population in comparison with unidentified infected
population. This is due to the assumption that the identified infectives are treated to be
aware and educated on the concerns related to the disease, thereby abiding by the protocols
sincerely in comparison with the unaware infectives.

2. A fraction p of exposed individuals move to Ia and (1 − p) to Id at a rate δ.
3. There is possibility for the unidentified infective to be detected and move to Id class at

rate η.
4. The unidentified infectives with no symptoms or very mild symptoms might recover at a

rate γ1 and move to the recovered class. It is also possible that few of these individuals in
Ia might die before even getting detected.

5. The infectives in Id who are asymptomatic or having mild symptoms are isolated or
quarantined at a rate ξ and the ones with very severe symptoms are hospitalized at a rate
ε.

6. It is possible that the quarantined individuals develop certain complications and are hos-
pitalized at a rate ν.
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Fig. 2 Schematic diagram of the epidemic model

7. The quarantined and hospitalized individuals recover at rates γ2 and γ3, respectively.
8. Since there are chances of the critically ill individuals to not recover even after hospital-

ization, these die at rate μ2.

The model is framed into the following system of differential equations:

dS

dt
= ∧ − β

(
Ia + ζ Id

m + Id

)
S − μS

dE

dt
= β

(
Ia + ζ Id

m + Id

)
S − (μ + δ)E

d Ia
dt

= pδE − (η + μ1 + γ1 + μ)Ia

d Id
dt

= (1 − p)δE + ηIa − (ξ + ε + μ)Id (1)

dQ

dt
= ξ Id − (γ2 + ν + μ)Q

dH

dt
= ε Id + νQ − (γ3 + μ2 + μ)H

dR

dt
= γ1 Ia + γ2Q + γ3H − μR
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3 Equilibria and stability

3.1 Disease-free equilibrium and reproduction number

The Disease-Free Equilibrium (DFE) is given by

E0 =
(∧

μ
, 0, 0, 0, 0, 0, 0

)

Basic reproduction number R0 is of major significance in epidemiological studies as it pro-
vides a complete overview on the disease transmission potential within a population. It is
expected number of secondary cases arising from a single primary case in an otherwise sus-
ceptible population. Using Next Generation Matrix Method as explained in [37–39], we find
the basic reproduction number R0 as follows:

F =
⎛
⎜⎝

β
(
Ia + ζ Id

(m+Id )

)
S

0
0

⎞
⎟⎠ V =

⎛
⎝ (δ + μ)E

−pδE + (η + μ1 + γ1 + μ)Ia
−(1 − p)δE − ηIa + (ξ + ε + μ)Id

⎞
⎠

The two matrices F and V are Jacobian of F and V , respectively, which depict new infections
and transition terms, respectively.

F =
⎛
⎝0 β∧

μ
βζ∧
μm

0 0 0
0 0 0

⎞
⎠ V =

⎛
⎝ δ + μ 0 0

−pδ (η + μ1 + γ1 + μ) 0
−(1 − p)δ −η (ξ + ε + μ)

⎞
⎠

From these we get,

FV−1 =
⎛
⎝a11 a12 a13

0 0 0
0 0 0

⎞
⎠

where

a11 = β ∧ δ

(η + μ1 + γ1 + μ)(μ + δ)μ

[
p + ζ((η + μ1 + γ1 + μ)(1 − p) + pη)

m(ξ + ε + μ)

]

a12 = β∧
μ(η + μ1 + γ1 + μ)

+ β ∧ ζη

μm(η + μ1 + γ1 + μ)(ξ + ε + μ)

a13 = β ∧ ζ

μm(ξ + ε + μ)

The basic reproduction number is the largest eigenvalue of FV−1 which is a11

∴ R0 = β ∧ δ

(η + μ1 + γ1 + μ)(μ + δ)μ

[
p + ζ((η + μ1 + γ1 + μ)(1 − p) + pη)

m(ξ + ε + μ)

]
.

Theorem 3.1 The Disease-Free Equilibrium E0 =
(∧

μ
, 0, 0, 0, 0, 0, 0

)
is locally asymptot-

ically stable under certain restrictions when R0 < 1 and is unstable otherwise.
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Proof The proof begins with obtaining Jacobian matrix JE0 of the system of equations (1)
at the equilibrium point E0

JE0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ 0 −β ∧
μ

−β
∧ζ
μm 0 0 0

0 −(μ + δ) β ∧
μ

−β
∧ζ
μm 0 0 0

0 pδ −(η + μ1 + γ1 + μ) 0 0 0 0
0 (1 − p)δ η −(ξ + ε + μ) 0 0 0
0 0 0 ξ −(γ2 + ν + μ) 0 0
0 0 0 ε ν −(γ3 + μ2 + μ) 0
0 0 γ1 0 γ2 γ3 −μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The characteristic polynomial |JE0 − λI | = 0 is given by:

(λ + a1) × (λ + a4) × (λ + μ)2 × (λ3 + a5λ
2 + a6λ + a7)

where,

a1 = η + μ1 + γ1 + μ, a2 = ξ + ε + μ, a3 = γ2 + ν + μ,

a4 = γ3 + μ2 + μ, a5 = a1 + a2 + δ + μ,

a6 = a1a2 + (a1 + a2)(δ + μ) − δpβ
∧
μ

− βδ
∧ζ

μm
(1 − p)

a7 = (a1a2)(δ + μ) − a1βδ
∧ζ

μm
(1 − p) − δpβ

∧
μ

(
a2 + ηζ

m

)
.

There are 7 eigenvalues, of which 4 are as follows −a3 < 0, − a4 < 0, − μ < 0 with −μ

repeating twice. The remaining are the cube roots of the following

λ3 + a5λ
2 + a6λ + a7 = 0.

By using Routh–Hurwitz Criteria, this Disease-Free Equilibrium is locally asymptotically
stable if a5 × a6 > a7 and a5 > 0, a7 > 0.

Clearly, a5 > 0, and when R0 < 1, we have

pβ
∧
μ

δ

(
a2 − ζ

m
a1 + ηζ

m

)
+ βδ

∧ζ

μm
a1 < a1a2(μ + δ) �⇒ a7 > 0.

Therefore, along with the above two, if a5 × a6 > a7, then E0 is locally asymptotically
stable. ��
3.2 Endemic equilibrium

Theorem 3.2 A unique endemic equilibrium point EE1 = (S∗, E∗, I ∗
a , I ∗

d , Q∗, H∗, R∗)
for the model described by the system of equation (1) exists only when R0 > 1.

The endemic equilibrium point has the following components:

R∗ = 1

μ

(
γ1 I

∗
a + γ2Q

∗ + γ3H
∗) , H∗ = 1

(γ3 + μ2 + μ)

(
ε I ∗

d + νQ∗) ,

Q∗ = ξ I ∗
d

(γ2 + ν + μ)
I ∗
d =

[
(1 − p)(η + μ1 + γ1 + μ) + pη

p(ξ + ε + μ)

]
I ∗
a ,

E∗ = (η + μ1 + γ1 + μ)I ∗
a

pδ
, S∗ = ∧(m + B1 I ∗

a )(
β((m + ζ B1)I ∗

a + B1 I ∗
a

2) + μ(m + B1 I ∗
a )

) ,

and I ∗
a is obtained by solving the below quadratic equation in Ia:

AIa
2 + BIa + C = 0
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where,

A = a1(μ + δ)B1, B = a1(μ + δ)(β(m + ζ B1) + B1μ) − βp ∧ δB1

C = a1(μ + δ)μm(1 − R0)

in which , a1 = η + μ1 + γ1 + μ and B1 = (1−p)a1+pη
p(ξ+ε+μ)

.

Proof Equating each equation of the model (1) to zero and solving the algebraic equations
gives us EE1. To prove that the obtained equilibrium point is unique and positive, we prove
that I ∗

a is greater than zero when R0 > 1 and is unique.

From the equation AIa2 + BIa + C = 0, we have Ia = −B±
√

(B2−4AC)

2A .

Clearly, A is positive. When R0 > 1, we have the following:

R0 > 1 �⇒ C < 0

�⇒ −B + √
(B2 − 4AC)

2A
> 0 and

−B − √
(B2 − 4AC)

2A
< 0.

This implies for R0 > 1, there exists a unique endemic equilibrium point.
To complete the proof, we now show that for the case when R0 < 1, there exists no

endemic equilibrium points. When R0 < 1 , it suggests the following,

R0 < 1 �⇒ B > 0 and C > 0

�⇒ −4AC < 0 ∵ AC > 0

�⇒ I f B2 > 4AC then B2 − 4AC > 0

�⇒ −B ±
√
B2 − 4AC < 0.

If B2 − 4AC < 0, then there exists no real roots of AI 2
a + BIa +C = 0. Therefore, R0 < 1

implies non-existence of endemic equilibrium point. ��
Theorem 3.3 The Endemic Equilibrium given by EE1 which exists if R0 > 1 is locally
asymptotically stable under certain restrictions and is unstable otherwise.

Proof We begin with the proof by first determining the Jacobian matrix JEE1 of the system
(1) at the equilibrium point EE1,

JEE1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(β I ∗
a

(
1 + ζ B1

m+B1 I ∗
a

)
+ μ) 0 −βS∗ −βζ S∗ m

(m+I ∗
d )2 0 0 0

β I ∗
a

(
1 + ζ B1

m+B1 I ∗
a

)
−(μ + δ) βS∗ βζ S∗ m

(m+I ∗
d )2 0 0 0

0 pδ −a1 0 0 0 0
0 (1 − p)δ η −a2 0 0 0
0 0 0 ξ −a3 0 0
0 0 0 ε ν −a4 0
0 0 γ1 0 γ2 γ3 −μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The characteristic polynomial |JEE − λI | = 0 is given by:

(λ + a3) × (λ + a4) × (λ + μ) × (λ4 + d1λ
3 + d2λ

2 + d3λ + d4)

where,

d1 = a1 + a2 + β I ∗
a

(
1 + ζ B1

m + B1 I ∗
a

)
+ δ + 2μ,
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d2 = μ2 + (a1 + a2)

(
2μ + δ + β I ∗

a

(
1 + ζ B1

m + B1 I ∗
a

))
+ a1a2

+δμ + (μ + δ)β I ∗
a

(
1 + ζ B1

m + B1 I ∗
a

)

−βζ S∗ m

(m + I ∗
d )2 δ(1 − p) − βδS∗,

d3 = (a1 + a2)μ(μ + δ) + (a1a2)(2μ + δ)

+β I ∗
a

(
1 + ζ B1

m + B1 I ∗
a

)
((a1 + a2)(μ + δ) + a1a2)

−βζ S∗ m

(m + I ∗
d )2 (δ(a1 + μ)(1 − p) + ηδp) − pδβS∗(a2 + μ),

d4 = β I ∗
a

(
1 + ζ B1

m + B1 I ∗
a

)
(a1a2)(μ + δ) + μ(a1a2)(μ + δ) − pa2βμS∗,

−βζ S∗ m

(m + I ∗
d )2 (δμ(a1(1 − p) + pη)).

Therefore, the eigenvalues are as follows:
−a3 < 0, − a4 < 0, − μ < 0. The remaining are the roots of the following

λ4 + d1λ
3 + d2λ

2 + d3λ + d4 = 0.

By using Routh–Hurwitz Criteria, this Disease-Free Equilibrium is locally asymptotically
stable if

d1 > 0, d1 × d2 − d3 > 0, d3(d1 × d2 − d3) − d2
1 × d4 > 0.

��

4 Numerical simulation

4.1 Fitting model to data

Data fitting involves fitting of the framed model to the data collected and analysis of the fit
accuracy. A model which is fitted well provides more accurate results. In this study, we have
worked with the data of India and its neighboring country Nepal, as these two share a similar
demography and both these countries have diverse ethnicity and cultures. We collected the
data of active COVID-19 cases for a period between July 1, 2020, and May 31, 2021, for
Nepal [40], and between July 1, 2020, and May 15, 2021, for India [41]. We did the data
fitting for the first and the second wave of COVID-19 in both these countries, along with
predictions up to June 30, 2021. From the model simulation, we estimated the optimum
values of the parameters β and ε for which the best fit of the model to data was obtained.
The remaining parameter values are listed in Table 1.

Numerical simulation of the developed mathematical model is carried out in R software.
Fitting of data is done by using the method of sum of least square [47], wherein the observed
active cases are fitted with the model solution. The best fit is obtained by estimating the
parameters β and ε for the data set of India and Nepal for both the first and the second wave
of COVID-19. The R0 value along with the estimated parameters is listed in Table 2.
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Table 1 Values of parameters
for the model (1)

Parameter Value References

∧ : Varies

p : [0.15,0.7] [4,42]

δ : [0.071,0.33] [42,43]

ξ : 0.07151 [44]

η : 0.019 Assumed

γ1 : 1/5 Assumed

γ2 : 1/7.48 [45]

γ2 : 1/14 [44,46]

μ1 : 0.0001 Assumed

μ2 : 0.0002 Assumed

ν : 0.004 Assumed

μ : 0.0000425 Demographic

Table 2 Estimated optimum parameter values and basic reproduction number

Wave Countries Estimated Parameter Values Estimated R0 Value

First Wave India β = 5.888 × 10−6 R0 = 1.8329

ε = .0329

Nepal β = 2.654 × 10−6 R0 = 1.0924

ε = .02996

Second Wave India β = 2.13 × 10−5 R0 = 2.5976

ε = .2371

Nepal β = 3.875 × 10−6 R0 = 1.18

ε = .1139

Comparing the two countries in terms of the infection rate, we notice that the effective
contact rate (β) is higher for India compared to Nepal and so is the basic reproduction number
(R0) in both the waves of the pandemic. As per [41], as on May 15, 2021, the total confirmed
cases in India with more than 1352 million population is more than 24 million, and according
to [40], the total confirmed cases in Nepal stand at more than 0.4 million, wherein the total
population of the country is 29 million plus. We observe that the difference in the effective
contact rate of these 2 countries is 3.234×10−6 and 1.7425×10−5 for the first and the second
wave, respectively, which is a small difference. This could be justified with the fact that with
such a large population the respective infections in these countries are quite smaller. We can
also relate this to the fraction of confirmed COVID-19 cases, which is 0.013 and 0.018 for
Nepal and India, respectively. Therefore, though individually these countries have a huge
difference in the number of COVID-19 cases, but when compared with respect to the total
population of each of these countries, the estimated infection rate suffices. It is also noticed
that, India witnessed rise in COVID-19 cases during the second wave by much larger margin,
in comparison with Nepal, hence during that period, the infection rate (β) and the basic
reproduction number value obtained are largest.

In this numerical simulation, we also estimate the optimum hospitalization rate. We see
that the hospitalization rate is better in the case of India as compared to Nepal. In comparison
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Fig. 3 Plots of fitted model with observed active cases of COVID-19 during the first wave for a India and b
Nepal, and plots of the fitted model with observed COVID-19 cases with predictions during the second wave
for c India and d Nepal. The red dotted line represents the observed data, and the green curve represents the
model solution

with the two waves in the respective countries, we note a rise in the hospitalization rate in
each of these countries compared to that of the first wave due to major increase in the number
of cases. Compared to the effective contact rate, in both the countries, the hospitalization rate
is more. This also suggests if the hospitalization rate of the identified infectives is more, the
possibilities of disease transmission from them will reduce to a major extent, hence reducing
the infection rate through this set of infectious individuals. Fig. 3 represents the fitted model
with the observed COVID-19 cases of the two countries for the first and the second wave,
along with prediction till 30 June, 2021. From the plots, a declining curve is observed in both
the countries for the next 30 to 40 days, which adheres with the data as per [40,41].

4.2 Sensitivity analysis

Sensitivity analysis plays a crucial role in determining the significance of various parameters
in transmission of the disease. It helps in understanding the rise and fall in the reproduction
number value with respect to certain parameters. A detailed study on the sensitivity for
the dengue disease is presented in [48]. By means of sensitivity analysis, we can scrutinize
parameters significant to the problem. Once these parameters are identified, various strategies
can be implemented for obtaining optimum outcome.

The normalized forward sensitivity index of a variable with respect to a parameter is the
ratio of the relative change in the variable to the relative change in the parameter. When the
variable is a differentiable function of the parameter, the sensitivity index may be alternatively
defined using partial derivatives. From [49], the normalized forward sensitivity index of R0,
that depends differentiably on a parameter q , is defined by

r R0
q = ∂R0

∂q
× q

R0
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Fig. 4 Normalized forward sensitivity indices of basic reproduction number with respect to certain parameters
for a India and b Nepal

Figure 4 depicts the Normalized Forward Sensitivity Indices of the basic reproduction number
for (a) India and (b) Nepal. From both these figures, we note that the parameters β, ζ , ∧, δ, p
share positive indices with R0, whereas the parameters η, ξ, ε, m, μ, μ1, γ1 have negative
indices with R0. It can be clearly concluded from the figures that increase in the effective
contact rate, and closer the value of the reduction parameter ζ is toward 1, the faster will be
the spread of the disease implying increase in R0. It can be also noted that the parameters
m and ξ are negatively associated with R0, and it can be noticed that for the case of Nepal,
increase in these 2 parameters has more impact in reduction in R0. In [50], an information of
fake news and misleading information on COVID-19 spread in Nepal and other developing
countries is laid out, which could suffice on the importance of right information reaching the
population. Media factor plays a same role in case of India as well. Similarly, increase in the
recovery rate of unidentified infected, hospitalization rate and detection rate will contribute
in decreasing the infection spread, hence the basic reproduction number.

A sensitivity analysis of the model (1) is performed using the approach of Latin Hypercube
Sampling (LHS) and Partial Rank Correlation Coefficient (PRCC) method as in [51,52] to
assess the influence of model parameters on infected population, both identified and uniden-
tified. We perform the analysis considering all the parameters to be uniformly distributed,
and we consider the unidentified infected (Ia) and identified infected (Id ) as the response
functions. The PRCC values which signifies mean strength help in identifying key param-
eters influencing Ia and Id , and its sign denotes correlation between the model parameters
and the response function. Latin Hypercube Sampling is used to determine the PRCC values
by means of stratified sampling with no replacement. Considering uniform distribution of
the parameters, we run 500 simulation per LHS, setting the parameter values to deviate by
±25% from their respective baseline values. Figure 5a and b denote the PRCC values for
the response functions Ia and Id , respectively. From the figure, we note that the parameters
∧, β, δ, p share positive correlation with both unidentified and identified infectives. When
compared the mean strength of the effective contact rate (β), movement rate from exposed
to infected (δ), and the fraction (p) with respect to Ia and Id , it is observed that the PRCC
values of these parameters are greater for the former compared to the later. The parame-
ters ξ, ε, γ1 share negative correlation with both unidentified and identified infectives. The
quarantine rate (ξ ) is a significant parameter with respect to Id as the response function,
since if more identified infected are quarantined efficiently, their exposure to susceptible is
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Fig. 5 PRCC results showing sensitivity indices of the model parameters with a Unidentified Infected (Ia ),
and b Identified Infected (Id ). Baseline values of the parameters are as follows: ∧ = 150, β = 0.000003,
ζ = 0.02, m = 1, δ = 0.25, p = 0.15, η = 0.019, ξ = 0.07, ε = 0.03, ν = 0.004, μ1 = 0.0001,
μ2 = 0.0002, γ1 = 0.2, γ2 = 0.1337, γ3 = 0.0714, μ = 0.000425

nullified. The parameter m, which is the media factor, shares negative correlation with the
identified infected, whereas a positive correlation with the unidentified infected, though the
mean strength is very low. This is evident as the media information equated with the identi-
fied infected to be abiding by rules and not contributing toward disease spread. Similarly, the
parameter η shares negative correlation with unidentified infected, and positive correlation
with the identified infected, since higher detection rate implies more number of unidentified
infectives moving to identified infected class. In all, this analysis emphasizes on the impor-
tance of better quarantine facility, enhanced treatment, better detection techniques and honest
media information toward implementing improved interventions to curb the disease spread.

Figures 6, 7, 8, 9 and 10 represent the variation in R0 above and below 1, with respect to
rise and fall of significant parameter values. Figure 4 shows that with the increase in effective
contact rate(β), the disease transmission accelerates and with increase in hospitalization rate
(ε) of the identified infected population, the disease transmission slows down. Figure 7 shows
that the increase in media information (m) in terms of spreading awareness on usage of face
masks, hygiene, social distancing and home quarantining, etc., helps in reducing the passage
of infection and hence lowers R0. Figure 8 depicts the reduction in the basic reproduction
number with increase in the detection rate (η) and hospitalization rate (ε). This is evident as
more and more infected individuals are identified and hospitalized, the possibilities of those
transmitting the disease to susceptible are reduced, since the possibilities of the susceptible
getting exposed to them are reduced. Increased recovery rate of the unidentified infected
implies smaller infectious period which in turn implies decreased probabilities of disease
transmission from these individuals, hence implying reduction in number of secondary cases.
This is depicted in Fig. 9. Figure 10 explains that with increase in effective contact rate (β)
and increase in value of (ζ ), the R0 values increases. The ζ is parameter which is responsible
in reduction in infection rate through detected individuals with its value closer to zero implies
reduction in disease transmission. ζ multiplied with β gives the modified disease transmission
rate of detected infected population. Hence, if the value of this reduction parameter is close to
zero, i.e a very small value, then the overall infection rate reduces. On the contrary, increase
in its value closer to 1 enhances the disease transmission and hence the number of secondary
cases.
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Fig. 6 Contour Plot of Basic Reproduction Number with respect to effective contact rate (β) and hospital-
ization rate (ε) for a India and b Nepal. The parameter values are as in Table 1

Fig. 7 Contour Plot of Basic Reproduction Number with respect to hospitalization rate (ε) and media informa-
tion (m) (decay factor) for a India and bNepal. Parameter values: aβ = 5.888×10−6 andbβ = 2.654×10−6.
The rest of the parameter values are as in Table 1

Fig. 8 Contour Plot of Basic Reproduction Number with respect to hospitalization rate (ε) and detection rate
(η) for a India and b Nepal. Parameter values: a β = 5.888 × 10−6 and b β = 2.654 × 10−6. The rest of the
parameter values are as in Table 1
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Fig. 9 Contour Plot of Basic Reproduction Number with respect to recovery rate of unidentified infected (γ1)
and effective contact rate (β) for a India and b Nepal. Parameter values: a ε = 0.03288 and b ε = 0.02996.
The rest of the parameter values are as in Table 1

Fig. 10 Contour Plot of Basic Reproduction Number with respect to ζ and effective contact rate (β) for a
India and b Nepal. Parameter values: a ε = 0.03288 and b ε = 0.02996. The rest of the parameter values are
as in Table 1

4.3 Change in COVID-19 Prevalence with variation in parameters

In this section, we study the time series behavior of the developed mathematical model (1)
for the total infected (Ia + Id ) and hospitalized population (H ) with respect to parameter
set : η, ε, η, ξ , ν, ε. We consider a time period of 800 days to depict the variation in these
variables. Figure 11 showcases the fall in infected population with increase in the detection
rate of the unidentified infectives (η) and the hospitalization rate of the identified infectives
(ε). This can be sufficed with the explanation that the more is the detection of the infectives
and higher is the rate of hospitalization of these detected infectives based on the severity
of conditions, lesser will be the infectives in open transmitting the disease to susceptible
population.

A similar trend is observed in Fig. 12, wherein the change in total infected population is
studied with rise in the values of parameter η and the quarantine rate of detected infectives.
A similar reasoning applies in this case as well.
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Fig. 11 Time series of the system of equations (1) depicting variation in Infected Population (Ia + Id ) with
respect to η and ε for a India and b Nepal

Fig. 12 Time series of the system of equations (1) depicting variation in Infected Population (Ia + Id ) with
respect to η and ξ for a India and b Nepal

In Fig. 13, we witness the decrease in the number of hospitalized population with reduced
hospitalization rate of identified infected and quarantined individuals. The non-availability of
proper medical facilities and sufficient hospital beds leads to reduction in the hospitalization
of the individuals in need of it, leading to the decrease in the hospitalized population.

5 Optimal control

5.1 Optimal control problem

Dynamic optimization or optimal control is of major significance in fields of sciences, man-
agement, engineering and economics. Optimal control helps in identifying parameters which
can control certain variables to produce the optimum result. In this section, we extend the
system of equation (1) by adding 3 control parameters u1, u2, and u3 and develop the optimal
control problem. The control u1 is included to reduce the transmission of disease. Though
media information and awareness on the disease plays a major role, there are possibilities
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Fig. 13 Time series of the system of equations (1) depicting variation in Hospitalized Population (H) with
respect to ν and ε for a India and b Nepal

that certain precautions will not be followed by the unaware infective individuals. Hence, this
control is equated to compulsory use of preventive face masks, gloves and sanitation. Since
we have both undetected and detected infected population, if there are advances in the testing
as well contact tracing, the detection rate could improve and hence help in identifying more
infected individuals, from whom the passage of disease to susceptible is less compared to
those from unidentified infectives. The control u2 is equated to this sort of improvement. In
the system (2), η + u2 represent the enhanced detection rate. Control u3 is added to improve
the quarantine and hospitalization rate of the identified infected population. This is neces-
sary and will help in controlling the further spread of disease from this set of infectives, as
the chances of them coming in contact with susceptible will be decreased majorly. ξ + u3

and ε + u3 represent the improved quarantine and hospitalization rates. Hence, u3 can be
equated to better medical facilities, with increase in number of beds, ventilators and mobile
quarantine centers, etc. These three control functions are bounded and Lebesgue integrable
on [0, t f ], where t f is the pre-fixed time interval length to which controls are applied. It is
assumed that u1, u2, and u3 lie between 0 and 1, since if these 3 equal zero, it implies no
efforts are placed in these controls. Similarly, maximum effort relates to these values being
1.

With the above assumptions, the following optimal control model is formulated:

dS

dt
= ∧ − β(1 − u1(t))

(
Ia + ζ Id

m + Id

)
S − μS

dE

dt
= β(1 − u1(t))

(
Ia + ζ Id

m + Id

)
S − (μ + δ)E

d Ia
dt

= pδE − (η + u2(t))Ia − (μ1 + γ1 + μ)Ia

d Id
dt

= (1 − p)δE + (η + u2(t))Ia − (ξ + u3(t))Id − (ε + u3(t))Id − μId

dQ

dt
= (ξ + u3(t))Id − (γ2 + ν + μ)Q

dH

dt
= (ε + u3(t))Id + νQ − (γ3 + μ2 + μ)H
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dR

dt
= γ1 Ia + γ2Q + γ3H − μR (2)

The objective functional for the fixed t f is given by

J =
∫ t f

0

(
C1 Ia + C2 Id + C3Q + C4H + 1

2
C5u

2
1 + 1

2
C6u

2
2 + 1

2
C7u

2
3

)
dt (3)

where, C1,C2,C3,C4,C5,C6,C6 ≥ 0 are the weight constants.
Objective is to find the control parameters u1∗, u2∗, and u2∗ such that

J (u1∗, u2∗, u3∗) = min
u1,u2,u3∈1

J (u1, u2, u3)

where, 1 is the control set, defined as

1 = {u1, u2, u3 : measurable and 0 ≤ u1, u2, u3 < 1} and t ∈ [0, t f ].
The Lagrangian of this problem is:

L(Ia, Id , Q, H, u1, u2, u3) = C1 Ia + C2 Id + C3Q + C4H + 1

2
C5u

2
1 + 1

2
C6u

2
2 + 1

2
C7u

2
3.

The Hamiltonian H formed for our problem is :

H = L(Ia, Id , Q, H, u1, u2, u3) + λ1
dS

dt
+ λ2

dE

dt
+ λ3

d Ia
dt

+λ4
d Id
dt

+ λ5
dQ

dt
+ λ6

dH

dt
+ λ7

dR

dt

where λ′
i s are the adjoint variables (i = 1 to 7).

The adjoint variables are written in the form of differential equations as follows:

dλ1

dt
= −∂H

∂S
= λ1μ + (λ1 − λ2)β(1 − u1(t))

(
Ia + ζ Id

m + Id

)

dλ2

dt
= −∂H

∂E
= λ2μ + (λ2 − λ3)pδ + (λ2 − λ4)(1 − p)δ

dλ3

dt
= − ∂H

∂ Ia
= −C1 + λ3(μ1 + μ) + (λ1 − λ2)β(1 − u1(t))S + (λ3 − λ4)(η + u2(t))

+(λ3 − λ7)γ1

dλ4

dt
= − ∂H

∂ Id
= −C2 + λ4μ + (λ1 − λ2)β(1 − u1(t))

mζ S

(m + Id)2 + (λ4 − λ5)(ξ + u3(t))

+(λ4 − λ6)(ε + u3(t))
dλ5

dt
= −∂H

∂Q
= −C3 + λ5μ + (λ5 − λ6)ν + (λ5 − λ7)γ2

dλ6

dt
= − ∂H

∂H
= −C4 + λ6(μ + μ2) + (λ6 − λ7)γ3

dλ7

dt
= −∂H

∂R
= λ7μ. (4)

Let S̃, Ẽ , Ĩa , Ĩd , Q̃, H̃ and R̃ be optimum values of S, E , Ia ,Id , Q, H and R, respectively.
Let λ̃1, λ̃2,λ̃3, λ̃4, λ̃5, λ̃6, and λ̃7 be solution of (3). By using [53–55], we state and prove the
below theorem.

Theorem 5.1 There exists optimal controls u1∗, u2∗andu3∗∈1 such that J (u1∗, u2∗, u3∗)

= min J (u1, u2, u3) subject to extended system of equations(2).
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Proof We use [53] to prove this theorem. In this case, we observe that the controls are non-
negative. The necessary convexity of the objective functional in (u1, u2, u3) is satisfied
for minimizing the problem. The set of control variable, u1, u2, u3 ∈ 1 is convex and
closed by definition. The state variables are bounded and the integrand of the functional
C1 Ia + C2 Id + C3Q + C4H + 1

2C5u2
1 + 1

2C6u2
2 + 1

2C7u2
3 is convex on 1. Since there

exist optimal controls for minimizing the functional subject to systems (2) and (4), we use
Pontryagin’s maximum principle [53] to derive the necessary conditions to find the optimal
solutions in the following way:

Suppose (z, u) is an optimal solution of an optimal control problem, then this implies that
there exists a non-trivial vector function λ = λ1, λ2, . . . , λn satisfying the following:

dz

dt
= ∂H(t, z, u, λ)

∂λ
, 0 = ∂H(t, z, u, λ)

∂λ
,

dλ

dt
= ∂H(t, z, u, λ)

∂λ

��
Theorem 5.2 The optimal controls u1∗, u2∗, and u3∗ which minimize J over the region 1

are given by:

u1∗ = min {1, max(0, ũ1}
u2∗ = min {1, max(0, ũ2}
u3∗ = min {1, max(0, ũ3}

where,

ũ1 =
(λ2 − λ1)β

(
Ia + ζ Id

m+Id

)
S

C5

ũ2 = (λ3 − λ4)Ia
C6

ũ3 = (λ4 − λ5)Id + (λ4 − λ6)Id
C7

Proof We prove this theorem by using [53,54] and Theorem 5.1.
Using the optimally condition: ∂H

∂u1
= 0, ∂H

∂u2
= 0, and ∂H

∂u3
= 0, we get,

∂H
∂u1

= C5u1 + (λ1 − λ2)β

(
Ia + ζ Id

m + Id

)
S = 0

�⇒ u1 =
(λ2 − λ1)β

(
Ia + ζ Id

m+Id

)
S

C5
= ũ1

∂H
∂u2

= C6u2 + (λ4 − λ3)Ia = 0

�⇒ u2 = (λ3 − λ4)Ia
C6

= ũ2

∂H
∂u3

= C7u3 + (λ5 − λ4)Id + (λ6 − λ4)Id = 0

�⇒ u3 = (λ4 − λ5)Id + (λ4 − λ6)Id
C6

= ũ3

Again the lower bound is 0 and upper bound is 1 for the controls u1, u2 and u3. This suggests
that u1 = u2 = u3 = 0 if ũ1 < 0, ũ2 < 0 and ũ3 < 0, also u1 = u2 = u3 = 1 if ũ1 > 1,
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Fig. 14 Control Profiles of the control parameters a u1, b u2, and c u3

ũ2 > 1 and ũ3 > 1, otherwise u1 = ũ1, u2 = ũ2 and u3 = ũ3. Therefore, for these controls
u1∗, u2∗ and u3∗ we get optimum values of J . ��

5.2 Optimal control model simulation

To perform the optimal control simulation, we code in MATLAB by using certain parameter
set which correspond to stability of endemic equilibrium point. We consider a time interval
of 400 days to perform the simulation. The weight constants are C1 = 1, C2 = 1, C3 =
1, C4 = 1, C5 = 40, C6 = 45, C7 = 45. The extended system of equations (2) is solved
by iterative method using forward and backward difference approximation [55]. Figure 14
depicts the control profile of u1, u2, and u3. From these figures, we can infer that the control
profile u1 needs to be maintained at 1 for a longer duration compared to the other 2 controls.
This control relates to reduction in disease transmission via social distancing, compulsory
usage of face mask and sanitation. These measure are a bit difficult to be adhered to, and if
these are applied by every individuals, the spread of the disease can be reduced drastically.
From Fig. 14b, we notice that the control profile equating to enhanced detection by means
of rapid testing moves from 0.15 to 0.95 within no time. It again drastically falls to 0.7 from
where it can be controlled over a period of time. This is probably because, a detection rate is
already included in the model, which is then related with media information associated with
the detected infected. Hence, if the detected infected are very well aware of the situation,
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Fig. 15 Control profiles of a u1 , b u2, and c u3 with variation in the costs of controls

they will abide by the measures, media information on COVID-19 and this proportion of
infected population will merely contribute in disease transmission. Figure 14c depicts that
the control profile u3 is crucial in curbing the pandemic, since after detection of the infected
if the infectives are not quarantined or hospitalized in a systematic manner, the chances of
disease spreading from these individuals will rise.

Figure 15 depicts the variations in control profile with increase in the cost of these controls.
We note that as the cost of these control parameters increases, the duration for these controls
to be maintained at 1 reduces. This is due to the reason that as the cost of the equipment and
advertisements to implement these controls increases, the likelihood of higher investment on
those would reduce.

In Fig. 16, we visualize how the infected and recovered population are impacted by the
control parameters. We do the optimal control simulation for Nepal and India.
NEPAL: Fig. 16a and b show the variation in infected population (Ia + Id ) and recovered
population, respectively, with and without the 3 controls. We note that if all the three controls
are applied, the number of infected population could be reduced drastically in Nepal. Figure
16b shows that with these controls the recovered population could be increased compared
to when no controls are applied. As per [40], the total COVID-19 cases stand at 0.5 million
plus, whereas the optimal control analysis suggests that systematic implementation of inter-
ventions encompassing the mentioned control parameters could have controlled the spread
of infections to a major extent.
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Fig. 16 Variations of Infected Population (Ia + Id ) and Recovered Population (R) with and without control
in (a,b) Nepal and (c,d)India

INDIA: Fig. 16c and d show the variation in infected population (Ia + Id ) and recovered
population, respectively, with and without the 3 controls. In case of India, we note that there
is difference in number of infected population of around 0.2 million, with and without the
application of the 3 controls. As per ([41]), the recoveries are more than 20 million, however,
with application of each of these controls it could be curbed further.

6 Conclusion

Compartmental epidemiological models aid in better understanding of disease spread and
control. In this work, a 7 compartment epidemiological model is framed and solved. A
detailed study on equilibria and stability analysis is presented in this work. We considered
a 11 months data of observed active COVID-19 cases of India and Nepal and performed
numerical simulation on it. We fitted the developed model to the data and estimated optimum
parameter values of the effective contact rate and hospitalization rate of the identified infected
which resulted in the best fit of the model. Predictions till June 30, 2021 were obtained
using the second wave data for both the countries, and a declining trend was observed for
both the countries for the next 30 to 40 days. We obtained higher effective contact rate for
India in comparison with Nepal, which adheres as per the actual data reports [40,41]. We
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obtain a smaller hospitalization rate for Nepal compared to India which is sufficed by news
reports from [19,20]. A detailed analysis on sensitivity is presented in this work by means
of normalized forward sensitivity index of the basic reproduction number and PRCC with
unidentified and identified infected as the response functions. We note that with increase in
detection rate, hospitalization and quarantine rates, the infection spread can be controlled.
Higher is the number of identified infectives getting quarantined and hospitalized, lower will
be the probability of disease transmission from these individuals. Similarly, higher is the
detection rate by means of testing and contact tracing, lower will be the disease spread. The
inclusion of media information also plays a major role in controlling the disease spread. In
addition to use of face masks and practice of social distancing, information through media will
make the individuals aware on various aspects of the disease, be it the preventive measures
to be undertaken before or after being infected, or the behavioral changes toward combating
the spread of the virus. Valid and correct information will lead to increase in the number
of aware individuals, irrespective of being infected or not, thereby taking necessary steps
in terms of self-isolation, medication and abiding by other disease-related protocols. This
is followed by the extension of proposed model to optimal control problem. In this case,
a detailed study on control parameters related to social distancing, usage of face masks,
rapid testing, and improved quarantine and medical facilities is discussed. A study on this
leads to the conclusion that if interventions related to medical facilities, quarantine centers
and rapid testing is implemented, the rising number of infections can be curbed majorly,
further implying increased recoveries. A further study with inclusion of vaccination can be
implemented in future. This could be further associated with age factor and the vaccine
efficacy for different age groups. A detailed study, with various factors will help in getting a
broader and deeper knowledge in COVID-19 study.
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